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Abstract

The local stability of an irreversible Carnot heat engine has been studied based on the linearization technique for dynamical systems and local
stability analysis. At two steady-states of the maximum power output and the maximum efficiency the expressions of the relaxation time of an
irreversible Carnot heat engine are derived. It is found that the relaxation time is a function of the heat-transfer coefficient α and β, heat capacity C,
temperatures of the heat reservoirs TH and TL, the degree of internal irreversibility φ and the internal heat conductance k. The influence of heat
resistance, internal irreversibility and heat leak on the relaxation time is discussed. Phase portraits for the trajectories are presented in some
representative cases. The results obtained here are more general and useful for the realistic irreversible heat engine than endoreversible heat
engine.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In classical thermodynamics, a reversible Carnot heat en-
gine produces the maximum possible work for a given tem-
peratures of the hot and cold reservoirs but generates zero
power because it is an infinitely slow operation. The efficiency
(ηC = 1 − TL/TH ) of Carnot cycle is the upper bound on the
efficiency which real heat engine is unrealistically high. In or-
der to seek a more realistic upper bound on the efficiency of
a heat engine, Curzon and Ablborn proposed an endoreversible
model of Carnot cycle and calculated its efficiency at maximum
power output, i.e. so-called CA efficiency ηCA = 1 − √

TL/TH

[1]. On the basis of this work, a series of investigations related
to endoreversible heat engines have been carried out [2–11].

The endoreversible heat engine requires no internal irre-
versibility and the sole source of irreversibility is finite-rate
heat transfer between the working fluid and the two heat reser-
voirs. However, real heat engines are usually complex de-
vices with both internal and external irreversibilities. Besides
the irreversibility of finite-rate heat transfer, there are also
other sources of irreversibility, such as heat leaks, dissipative
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processes inside the working fluid, and so on. In order to assess
the effect of finite-rate heat transfer, together with other ma-
jor irreversibilities on the performance of heat engines, some
new irreversible models of heat engines were established and
many significant results were obtained [12–18]. For example,
the power versus efficiency relationship for an endoreversible
heat engine is a parabolic shaped curve, the behavior of a loop-
shaped power versus efficiency appears for a irreversible heat
engine, and so on.

Most of the studies of heat engines have focused on their
steady-state energetic properties. But the real heat engines are
always no-steady and there exists intrinsic cycle variability in
the operation of the cycle, for example, incomplete combustion
of fuel, friction and other causes. Thus, it is necessary to ana-
lyze the effect of noisy perturbations on the stability of system’s
steady-state. Recently, Santillán et al. studied the local stabil-
ity of an endoreversible CAN engine working in a maximum
power output. L. Guzman-Vargas et al. analyzed the effect of
heat transfer laws and thermal conductance on the local stabil-
ity of an endoreversible heat engine [19,20]. R. Páez-Hernández
et al. analyzed the dynamic effects of the time delays and the
effect of internal irreversibility on the local stability of non-
endoreversible heat engine [21]. Some useful results are ob-
tained. Following their works and taking into account other irre-
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Nomenclature

C heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . W K−1

F total surface area of heat exchangers . . . . . . . . . m2

F1 surface area of the hot-side heat exchanger . . . m2

F2 surface area of the cold-side heat exchanger . . m2

J1 no-steady-state heat flows from warm working
fluid to engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W

J2 no-steady-state heat flows from engine to cold
working fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W

J̄1 steady-state heat flows from warm working fluid to
engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W

J̄2 steady-state heat flows from engine to cold
working fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W

k internal conductance of the heat engine . . W K−1

m temperature ratio of the working fluid
mP optimal temperature ratio of the working fluid at the

maximum power output
mη optimal temperature ratio of the working fluid at the

maximum efficiency
P power output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
QH heat transfer supplied by the hot reservoir . . . . . W
QL heat transfer released to the cold reservoir . . . . W
q rate of heat leak between the hot and cold

reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W

TH temperature of the hot reservoir . . . . . . . . . . . . . . K
TL temperature of the cold reservoir . . . . . . . . . . . . . K
t relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
x temperature of the warm working fluid at

no-steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
y temperature of the cold working fluid at

no-steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
x̄ temperature of the warm working fluid at

steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
ȳ temperature of the cold working fluid at

steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Greek letters

α heat transfer coefficient of the hot-side heat
exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W K−1

β heat transfer coefficient of the cold-side heat
exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W K−1

η efficiency
η̄0 efficiency of the irreversible engine without heat

leak at steady-state
φ internal irreversibility factor
λ complex number (the eigenvalue)
τ temperature ratio of heat reservoirs
versible factors in heat engines, we further analyze the effect of
the heat-transfer coefficient, heat leak and internal irreversibil-
ity on local stability of an irreversible Carnot heat engine.

In this paper, we will investigate the local stability of an
irreversible Carnot heat engine considering the heat leak and
internal irreversibility of engine. Some general results about
the local stability analysis of an irreversible heat engine are ob-
tained.

2. An irreversible Carnot engine model

Consider a steady flow Carnot engine model, including the
irreversibilities of finite-rate heat transfer between the working
fluid and its reservoirs, heat leak between the two reservoirs
and internal dissipations of the working fluid, shown in Fig. 1.
The working fluid is alternately connected to a hot reservoir
at constant temperature TH and to a cold reservoir at constant
temperature TL, and its temperatures are x and y, respectively.
Due to the finite heat transfer, internal dissipations and heat
leak, one can derive the expressions of the optimal power out-
put and the optimal efficiency of an irreversible Carnot engine
with linear heat transfer law. When the optimal surface area ra-
tio satisfy [16,22]

F1/F2 = √
β/φα (1)

the power output and efficiency are, respectively,

P = B
(
1 − φm−1)(TH − TLm) (2)
Fig. 1. Schematic diagram of an irreversible Carnot heat engine.

and

η = (1 − φm−1)(TH − TLm)

TH − TLm + ρ(TH − TL)
(3)

where B = αF/(1 + √
φα/β )2, ρ = k/B,F1 and F2 are the

surface areas of the hot-side and cold-side heat exchangers, F is
the total heat-transfer surface area of the two heat exchangers,
α and β are the overall heat-transfer coefficients at the hot-
and cold-side heat exchangers, k is the internal heat conduc-
tance of the engine, φ is the degree of internal irreversibility
resulting from internal dissipations of the working fluid, m is
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Fig. 2. Plot of power output versus efficiency for different values of τ at given
parameters φ = 1.1, k = 0.2, β/α = 1 and αF = 4.

the temperature ratio of the working fluid. The characteristic
curve of P ∼ η is a loop shape passing the zero point shown
as in Fig. 2. It is clearly shown that there are two steady-state
points of the engine. One is a maximum power output Pmax and
the corresponding efficiency ηP ; the other is a maximum effi-
ciency ηmax and the corresponding power output Pη. Further,
one can obtain optimal temperature ratios of the working fluid
at the maximum power output (dP/dm = 0) and the maximum
efficiency (dη/dm = 0),

mP = x/y = √
φTH /TL (4)

and

mη = x/y = (φTH − A)/
(
φTL − qB−1) (5)

where A =
√

φTH qB−1(TH T −1
L − φ + qB−1T −1

L ) and q =
k(TH − TL). The heat flow (QH ) from the hot reservoir to the
warm working fluid through the hot-side heat exchanger and the
heat flow (QL) from the cold working fluid to the cold reservoir
through the cold-side heat exchanger can be expressed as

QH = xP

x − φy
(6)

and

QL = φyP

x − φy
(7)

3. The steady-state irreversible Carnot engine

Consider the irreversible Carnot engine operates between
temperatures x̄ and ȳ, where x̄ and ȳ represent the steady-
state temperatures of working fluid, as shown in Fig. 1. The
irreversibility hypothesis means that the cycle is internally irre-
versible. Thus, the heat flows can be given by

J̄1 = x̄
P̄ (8)
x̄ − φȳ
and

J̄2 = φȳ

x̄ − φȳ
P̄ (9)

where J̄1 and J̄2 are the steady-state heat flows from x̄ to engine
and from engine to ȳ, respectively. P̄ is the steady-state power
output. The variables with overbars denote steady-state values.
When an irreversible Carnot engine operates in a steady-state,
this means that the heat flow (QH ) from TH to x̄ equals to J̄1
and the heat flow (QL) from ȳ to TL equals to J̄2, i.e.

J̄1 = αF1(TH − x̄) (10)

and

J̄2 = βF2(ȳ − TL) (11)

According to Eq. (8), the efficiency of an irreversible Carnot
engine without heat leak is

η̄0 = P̄ /J̄1 = 1 − φȳ/x̄ (12)

It is possible to express temperatures x̄ and ȳ as

x̄ = TH

√
φα/β + φτ(1 − η̄0)

−1

1 + √
φα/β

(13)

and

ȳ = TL

√
α/φβ (1 − η̄0)τ

−1 + 1

1 + √
φα/β

(14)

where τ = TL/TH is the temperature ratio of heat reservoirs.
Using Eqs. (12)–(14) one can obtain the temperatures of the hot
and cold reservoirs and power output as a function of x̄ and ȳ

TH =
√

φα/β ȳx̄ + ȳx̄√
φα/β ȳ + τ x̄

(15)

TL =
√

φα/β ȳx̄ + ȳx̄√
φα/β ȳτ−1 + x̄

(16)

and

P̄ = αF1(x̄ − φȳ)
ȳ − τ x̄√

φα/β ȳ + τ x̄
(17)

4. Local stability analysis of an irreversible Carnot engine

4.1. Linearization and stability analysis [23,24]

Consider the dynamical system

dx

dt
= f (x, y) (18)

and

dy

dt
= g(x, y) (19)

Let (x̄, ȳ) be the steady-state solutions of Eqs. (18) and (19)
such that f (x̄, ȳ) = 0 and g(x̄, ȳ) = 0. If x and y are close to
their steady-state values, we can write x(t) = x̄ + δx(t) and
y(t) = ȳ + δy(t), where δx(t) and δy(t) are small perturba-
tions. By substituting this into Eqs. (18) and (19) and using the
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smallness of δx(t) and δy(t) to cut at first order in the Tay-
lor series expansions, one can obtain the following set of linear
differential equations for perturbations δx(t) and δy(t):

dδx(t)

dt
= fxδx(t) + fyδy(t) (20)

and
dδy(t)

dt
= gxδx(t) + gyδy(t) (21)

where fx = (
∂f
∂x

)x,y, fy = (
∂f
∂y

)x,y, gx = (
∂g
∂x

)x,y and gy =
(
∂g
∂y

)x,y . Assume that δx(t) and δy(t) are of the form

δx(t) = Z1eλt (22)

and

δy(t) = Z2eλt (23)

with λ is a complex number to be determined. Substitution of
Eqs. (22) and (23) into Eqs. (20) and (21) leads to the following
set of homogeneous linear algebraic equations for Z1 and Z2

(fx − λ)Z1 + fyZ2 = 0 (24)

and

gxZ1 + (gy − λ)Z2 = 0 (25)

This set of equations has non-trivial solutions only if the deter-
minant of the matrix of coefficients equals zero, i.e.

(fx − λ)(gy − λ) − gxfy = 0 (26)

which is called the characteristic equation and λ is called the
eigenvalue. The characteristic relaxation times can be defined
as

t = 1

|λ| (27)

4.2. Local stability analysis

In order to analyze local stability of an irreversible Carnot
heat engine, assuming that the temperatures x and y corre-
spond to macroscopic objects with heat capacity C and are not
real heat reservoirs and the working fluid. The heat capacities
of the heat reservoirs and the working fluid in two isothermal
branches are infinite. Nevertheless, the heat capacity C of the
macroscopic objects is finite but large enough. The differential
equations for x and y are given by

dx/dt = [
αF1(TH − x) − J1

]
/C (28)

and

dy/dt = [
J2 − βF2(y − T2)

]
/C (29)

where J1 and J2 are the heat flows from x to the working sub-
stance and from the Carnot engine to y, respectively. By using
Eqs. (8) and (9) J1 and J2 are given by

J1 = x

x − φy
P (30)

and

J2 = φy
P (31)
x − φy
Substitution of Eqs. (30) and (31) into Eqs. (28) and (29) leads
to

dx/dt = [
αF1(TH − x) − xP/(x − φy)

]
/C (32)

and

dy/dt = [
φyP/(x − φy) − βF2(y − TL)

]
/C (33)

4.3. The case of the maximum power output

When the engine works in steady-state of the maximum
power output, the optimal temperature ratio of the working fluid
is given by Eq. (4)

mP = x̄/ȳ = √
φ/τ (34)

The temperature ratio of heat reservoirs τ may be written as a
function of x̄ and ȳ

τ = φȳ2/x̄2 (35)

By using Eqs. (12)–(14) and (34), the steady-state values x̄ and
ȳ, as function TL and TH , can be obtained

x̄ = TH

√
φα/β + √

φτ

1 + √
φα/β

(36)

and

ȳ = TH

√
τα/β + τ

1 + √
φα/β

(37)

Finally, substituting Eq. (35) into Eq. (17), one can obtain the
steady-state power output

P̄ = αF1(x̄ − φȳ)2/
(√

φα/β x̄ + φȳ
)

(38)

When the engine works out of the steady-state but not too far
away, the power output of an irreversible heat engine depends
on x and y in the same way that it depends on x̄ and ȳ at the
steady-state, i.e. P(x, y) = P(x̄, ȳ). Thus, the dynamic equa-
tions for x and y can be obtained by substituting Eq. (38) into
Eqs. (32) and (33)

dx

dt
= αF1

C

[
(TH − x) − x(x − φy)

φ(
√

α/φβ x + y)

]
(39)

and
dy

dt
= αF1

C

[
y(x − φy)√
α/φβx + y

− √
φβ/α (y − TL)

]
(40)

Let f (x, y) and g(x, y) be defined as

f (x, y) = αF1

C

[
(TH − x) − x(x − φy)

φ(
√

α/φβ x + y)

]
(41)

and

g(x, y) = αF1

C

[
y(x − φy)

(
√

α/φβ x + y)
− √

φβ/α (y − TL)

]
(42)

After solving the characteristic equation (26), using Eq. (1) and
the fact of F1 + F2 = F , one may get the eigenvalues, i.e.

λ1,2 = − αF
√

φβ/α

2C(
√

α/β + √
τ)2

{[
α

φβ
+ 2

φ

√
ατ

β
(φ + 1) + τ

]

± √
Δ1

}
(43)
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where Δ1 = τ 2 + 2α
β

[2 + 2
φ2 − 3

φ
]τ + 4α

φ2β

√
ατ
β

(1 −φ)+ ( α
φβ

)2.

By using Eqs. (24) and (25), the corresponding eigenvectors
are u1,2 = (1, (1/2

√
φ )�√α/β + 2(1 − φ)

√
τ − φ

√
α/β(τ ±√

Δ1 )�), respectively. With the help of the numerical solutions,
it is easy to prove that both λ1 and λ2 are real and negative
(λ1 < λ2) for every 0 < τ < 1, α > 0 and β > 0. Therefore,
the steady-state is stable because any perturbation would decay
exponentially with time. The characteristic relaxation times can
be obtained

t1,2 = −1/λ1,2 (44)

i.e.

t1,2 = 2C(
√

α/β + √
τ )2

αF
√

φβ/α

{[
α

φβ
+ 2

φ

√
ατ

β
(φ + 1) + τ

]

± √
Δ1

}−1

(45)

It is shown from Eq. (45) that the heat leak has no any effect
for the stability of an irreversible Carnot engine. When the en-
gine is endoreversible, i.e. φ = 1, the values of t1 and t2 come
back the values of endoreversible CAN engine with liner heat-
transfer studied by L. Guazman-Vargas [20].

Relaxation times versus τ are plotted for different values
of β/α at a fixed value of φ = 1.1, as shown in Figs. 3(a)
and (b). For a given value of β/α < 1, one can observe that
both relaxation times decrease as τ increases, but t1 is almost
constant. The stability improves as τ → 1. If β/α → 0, then
t2 → ∞. The stability of the system is lost. In opposite direction
β/α > 1, t1 is a decreasing function of τ , but t2 is not monoto-
nous function of τ and has a minimum value at the special value
of τ . As β/α increases both relaxation times decrease.

Relaxation times versus τ are plotted for different values of
φ at a fixed value of β/α = 1, as shown in Fig. 4. t1 increases
but t2 decreases as φ increases.

The phase space portrait of x(t) versus y(t) at fixed val-
ues of β/α = 1, φ = 1.1 and τ = 0.4 is shown in Fig. 5. The
trajectories approach the origin (steady-state values x̄, ȳ) tan-
gent to the slow eigendirection corresponding to eigenvector
u2 = (1,0.85). In backwards time (t → −∞), the trajectories
are parallel to the fast eigendirection corresponding to eigen-
vector u1 = (1,−0.44). It is found that both x(t) and y(t) decay
exponentially to the origin.

4.4. The case of the maximum efficiency

When the engine works in steady-state of the maximum ef-
ficiency, the optimal temperature ratio of the working fluid is
given by Eq. (5)

mη = x̄

ȳ
= φ − √

ρφ(τ−1 − 1)(1 + ρ − ρτ − φτ)

φτ − ρ(1 − τ)
(46)

where τ � τmax = (1+ρ)/(φ+ρ). From Eq. (46) one can write
the temperature ratio τ as a function of x̄ and ȳ,

τ =
{(

ρx̄2 + 2φx̄ȳ + ρφȳ2)
(a)

(b)

Fig. 3. Plot of relaxation times versus τ for different values of β/α at given
parameter φ = 1.1.

Fig. 4. Plots of relaxation times versus τ for different values of φ at given
parameter β/α = 1.

−
√(

ρx̄2 + 2φx̄ȳ + ρφȳ2
)2 − 4φx̄2ȳ2(1 + ρ)(φ + ρ)

}
/{

2(φ + ρ)x̄2} (47)
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Fig. 5. Qualitative phase space portrait of x(t) versus y(t) at fixed values of
β/α = 1, φ = 1.1 and τ = 0.4 for the case of the maximum power output.

By using Eqs. (12)–(14) and (46), the steady-state values x̄ and
ȳ, as function TL and TH , can be obtained

x̄ = TH

{
φτ

(
1 + √

φα/β
) + ρ(τ − 1)

√
φα/β

− √
ρφτ(1 − τ)(1 + ρ − ρτ − φτ)

}
/{(

1 + √
φα/β

)
(φτ − ρ + ρτ)

}
(48)

and

ȳ = TH

{
φτ

(
1 + √

φα/β
) + ρ(τ − 1)

√
φα/β

− √
ρφτ(1 − τ)(1 + ρ − ρτ − φτ)

}
/{(

1 + √
φα/β

)

× (
φ −

√
ρφ(τ−1 − 1)(1 + ρ − ρτ − φτ)

)}
(49)

By using Eqs. (17), (32), (33) and (47), the dynamic equations
for x and y can be obtained

dx

dt
= αF1

C

[
TH − (1 + √

φα/β )xy√
φα/β y + τx

]
(50)

and

dy

dt
= αF1

C

[√
φβ/αTL − (φ + √

φβ/α )τxy√
φα/β y + τx

]
(51)

where τ is decided by Eq. (47) as long as x̄ and ȳ are replaced
by x and y, respectively. Let f (x, y) and g(x, y) be defined as

f (x, y) = αF1

C

[
TH − (1 + √

φα/β )xy√
φα/β y + τx

]
(52)

and

g(x, y) = αF1

C

[√
φβ/αTL − (φ + √

φβ/α )τxy√
φα/β y + τx

]
(53)

After solving the characteristic equation (26), one may get the
eigenvalues, i.e.

λ1,2 = −αF

2C(
√

φα/β + τmη)2

[(
b + √

φα/β

+ φb + τ 2m2
η

√
φβ/α

) ± √
Δ2

]
(54)

where
Δ2 = (−b − √
φα/β + φb + τ 2m2

η

√
φβ/α

)2 + 4φ(τmη − b)2

b = (ρ + mη)φ

(φ + ρ)mη

− {
φ(mη + ρ)

(
ρm2

η + 2φmη + ρφ
)

− 2(φ + ρ)(1 + ρ)φm2
η

}/{
(φ + ρ)mη

×
√(

ρm2
η + 2φmη + ρφ

)2 − 4(φ + ρ)(1 + ρ)φm2
η

}
The corresponding eigenvectors are u1,2 = (1, (φb − b −√

φα/β +τ 2m2
η

√
φβ/α±√

Δ2 )/2mη(mητ −b)), respectively.
The characteristic relaxation times are obtained

t1,2 = 2C(
√

φα/β + τmη)
2

αF

[(
b + √

φα/β + φb

+ τ 2m2
η

√
φβ/α

) ± √
Δ2

]−1 (55)

Eq. (55) is the general expression of the characteristic relax-
ation times as a function of τ, k,φ and β/α. By using numerical
solution, it is easy to prove that λ1 and λ2 are negative (λ1 < λ2)

for every 0 < τ < 1, α > 0, β > 0, k > 0 and φ > 1. Thus,
the steady-state of the maximum efficiency is also stable be-
cause λ1 and λ2 are negative. Every small perturbation around
the steady-state values of the temperature of the working fluid
would decay exponentially with time.

Relaxation times versus τ are plotted for different values
of β/α at given parameters φ = 1.1, k = 0.1 and αF = 4, as
shown in Figs. 6(a) and (b). For a given value of β/α < 1, one
can observe that the relaxation time t2 decreases but t1 increases
faintly as τ increases. If β/α → 0, then t2 → ∞. The stability
of the system is lost. In opposite direction β/α > 1, both t1 and
t2 are not monotonous function of τ . t1 shows a maximum but
t2 shows a minimum at different value of τ . As β/α increases
both relaxation times decrease. It is also shown that τ has the
upper bound τmax.

Relaxation times versus τ are plotted for different values of
φ at given β/α = 1, k = 0.1 and αF = 4, as shown in Fig. 7.
The relaxation time t1 is not monotonous function of τ . t2 de-
creases as τ increases. As φ increases t1 increases but decreases
subsequently. t2 decreases with increasing φ. It is worthy to
note that φ has great influence on the upper bound of τ .

Relaxation times versus τ are plotted for different values of k

at given β/α = 1, φ = 1.1 and αF = 4, as shown in Fig. 8. The
relaxation time t1 is not monotonous function of τ . t2 decreases
as τ increases. As k increases t1 decreases but t2 increases.

The phase space portrait of x(t) versus y(t) at fixed values
of β/α = 1, φ = 1.1, k = 0.2 and τ = 0.4 is shown in Fig. 9.
For the case of maximum efficiency, the trajectories approach
the origin (steady-state values x̄, ȳ) tangent to the slow eigendi-
rection corresponding to eigenvector u2 = (1,0.82). In back-
wards time (t → −∞), the trajectories are parallel to the fast
eigendirection corresponding to eigenvector u1 = (1,−0.35).
It is found that both x(t) and y(t) decay exponentially to the
origin.

5. Conclusions

The local stability analysis of an irreversible Carnot engine
obeyed by Newton’s heat transfer law is presented in this pa-
per. The general expressions of relaxation times for different
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Fig. 6. Plots of relaxation times versus τ for different values of β/α at given
parameters φ = 1.1, k = 0.1 and αF = 4.

Fig. 7. Plots of relaxation times versus τ for different values of φ at given
parameters β/α = 1, k = 0.1 and αF = 4.

Fig. 8. Plots of relaxation times versus τ for different values of k at given para-
meters β/α = 1, φ = 1.1 and αF = 4.

Fig. 9. Qualitative phase space portrait of x(t) versus y(t) at fixed values of
β/α = 1, φ = 1.1, k = 0.2 and τ = 0.4 for the case of the maximum efficiency.

steady-state points (the maximum power output or the maxi-
mum efficiency) are derived. The influence of heat resistance,
internal irreversibility and heat leak on the relaxation time is
shown in Figs. 3–4 and 6–8. The phase portraits clearly show
that any perturbation on x and y values tend to come back the
steady-state and the decay of speed of internal temperature is
different. The results obtained here are general and be useful
for both determination of optimal operating conditions and de-
sign of heat engines.
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